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This study considers the self-consistent modification of the trapping
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sipation an exact dynamic BGK (Bernstein-Greenme-Kruskal) equilibrium is

| found analytically. It consists of a singular charge clump which propagates
through the medium at constant velocity even thoug-h a DC field is present.

" The inmoricul study of the basic equations shows that the systea evolves

asymptotically to this singular state. A variety of experimentally relevant

phenomena associated with the trapping dynamics is investigated, including
the stability of the dynamic nonlinear equilibrium to sideband growth.
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I. Introduction
The trapping of charged particles within the travelling potential wells of
collective plasma oscillations is one of the more significant strong nonlineari-

ties encountered in plasmas. Particle trapping is known, both theoreticallyl’z

and experiuentally’, to alter the linear collisionless damping (Landau damping)
of collective nodés supported by plasmas, and it is one of the dominant mechan-
isms that limits the growth of velocity-space instabilities. The strong effects
produced by particle trapping are related to the formation of phase-space granu-

lations out of initially smooth contours. The phase-space granulation is par-

tially reversible, and under carefully selected conditions can lead to inter-
»S 5,6

esting upl:ltudo4

and phase oscillations which persist for relative long
times of experimental interest. The phase-space granulation can disappear
smoothly by the process of phase mixing while the charged particles remain
confined within the potential wells, as is characteristic of the time asymptotic
formation of steady Bernstein-Greene-Kruskal7 kBKG) modes. The granulation can
also disappear more abruptly if the trapped particles escape from the potential
wells, as may occur .due to the spontaneous growth of sideband waves, sudden
phase slippage due to finite dissipationa, or the launching of other large
amplitude waves.9
The present study is concerned with the dynamics of trapped particles and
the associated phase-space granulation in the presence of an externally applied
DC electric field. The motivation for investigating this dynamical system in
detail can be attributed to the finding in a previous theoretical studylo that
the momentum of a runaway beam can become clamped due to the excitation of modes
travelling in synchronism with the beam. That earlier study was in turn stimu-

11,12

lated by the experimental observation of runaway energy clamping in the

Microtor Tokamak at the University of California, Los Angeles.
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As is expected, the besm clamping effect sets in when the amplitude of the
resonant wave becomes larger than the external DC electric field. The earlier
calculation of this effect has been accomplished by means of a spstislly averaged

formalism based on the exact conservation laws for energy and momentum, but with

the restrictive implicit assumption that the phase-space granulation is instantan-
eously smeared out, i.e., the runaway beam acquires an irreversible thermal spread.
Of course, in reality the trapped particle dynamics is partially reversible.
Therefore, it is of interest to ellucidate the underlying single particle dynamics
accompanying the clamping process, io validate the existence of clamping indepen-

dently of the spatially averaged formalism, and to establish the limitations of

- the latter. In addition, there are various associated effects which are of

interest for both basic and applied reasons. A preliminary study of some of these

13,14

effects has been previously discussed by this author.

To isolate the principal effects produced by an external DC electric field

Bo, we consider the cleanest environment for trapped particle dynamics, i.e.,

the low density cold beam problem in which the background component supporting
the waves remsins strictly linear. In practice this situation can be realized
by having a cold background plasma with heavy ions or simply replacing the cold
Plasma by a slow wave simcturo, as is commonly done in travelling wave tube (TWT)

devices.” The cold plasma assumption can be met by supplying sufficient neutral

gas in order to compensate for the heating produced by the waves and the intrimsic
chmic heating associated with Bo.

17

It is well MS,IS- that in the absence of the DC electric field the

weak cold beam amplifies a narrow spectrum of noise wates supported by the

background structure. After several e-foldings the noise evolves into a nearly
monochromatic signal (single mode) whonam ‘48 stopped Uy the abrupt trapping




The application of a DC

of the beam electrons within its potential troughs.
electric field to this system is found to produce a secular growth in the wave
amplitude without a noticeable increase in the beam momentum, i.e., the external
momentum push is transferred to the wave while the beam remains clamped. This

result is obtained in the present study by following the self-consistent orbits

of the trapped particles in a digital computer, thus confirming the existence of
beam clamping predicted by the earlier spatially averaged analysis.10 However,
additional features associated with the trapping dynamics are uncovered. One
of them is the expected appearance of trapping oscillations of increasing fre- :
quency wh;ch modulate the secular growth in the wave amplitude. Another feature
is the generation of secondary low density runaway beams which arise from the
spillage of the primary beam particles out of the potential wells.
In the absence of wave damping the secular increase in the wave amplitude
produced by the DC electric field is unbounded. Large potential wells are gen-
erated and the trapped particles evolve into phase-space clumps of ever decreas-
ing dimensions. When a wave dissipation channel exists, one obtains analytically
an exact dynamic BGK equilibrium consisting of a singular charge clump which
is being pushed by_Bo, but whose momentum remains constant. This unusual and
highly nonlinear state is found to be approached asymptotically by the time
dependent computer solution of the problem.
The application of the DC electric field permits the detailed manipulation
of the position of the trapped particles relative to the bottom of the potential
wells of the wave. By changing the direction of the DC field, one can either
make the wave grow or damp. By mesns of this phase-space reconstruction, it is

possible to reverse the drastic disappearance of the trapped particle oscilla-

tions associated with finite wave dissipation.
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The enhanced growth in the wave amplitude produced by Eo can be used to
improve the efficiency of a TWT, as was investigated neﬁrly twenty years ago
by Hess.ls A similar application may be found for the collective free elect-
ron lasers under present considerntionlg, wvhere particle trapping plays an
important role. The results presented here illuminate some of the fundamental
processes which underly these practical developments, and define specific exper-
iments amenable to investigation 1h the laboratory.

In Section II of the paper some of the basic properties of trapping behav-
ior in the presence of a DC electric field are examined analytically; The
weak cold beam formalism is examined in Section III. The beam clamping effect
is discussed in Section IV, and the dynamic BGK equilibrium is explained in
Section V. The stability of the singular clump equilibrium to sideband growth

is investigated in Section VI. Concluding remarks are presented in Section VII.




II. Modified Trapping Behavior )

} Before considering the self-consistent evolution of the wave amplitude
w and phase together with the trapped particle dynamics in the presence of an
external DC electric field, it is useful to develop a simple‘description of
“X the lowest order effects produced by the DC field on particles which are trap- i
: ped in an electrostatic wave of fixed amplitude and phase velocity. In this %
case, the equation of motion for electrons of charge -e, and mass m, in the

wave frame moving ﬁith speed w/k relative to the laboratory is

t
m %Px:-eAM(hx)-\- ek, W

where A is the wave amplitude, k the wavenumber, and w the frequency. ) -
It is evident from Eq (1) that the particles move in a distorted potential

well whose potential energy function U is

U = - (eA/R)[(RxE,/m) & m\kﬂ] @

The spatial behavior of the corresponding potential well is exhibited in Fig. 1
for the values EO/A = 0.2, 0.5, 0{9, over the interval-w<kx<r. It is seen

that particle trapping ceases to exist when EoZA’ since only a single turning
point is found for the potential. This trapping threshold is a useful comparison

standard for the studies of Sec III, where it is shown that this threshold can

T T P T T A T e o

be exceeded by a factor of 2 when the self-consistent amplitude and phase changes
are considered.

For EO#O, the bottom of the potential well is shifted from x = 0 to a location

X given by




Xg = K' 4wt (EolA) -

and the corresponding bounce time ty is
3.
t @m\s d3
= ]
® : 5, -[U,-rz[m‘s +(3 E._IA).R *

In Eq (4), wb=(eAk/m)

(4)

1/2 is

instead of the usual elliptic integral expression.

the bounce frequency for E°=0, UO-U(t-O)/[eA/k) is the scaled energy of the
particle, &=kx, and El’ 52 refer to the turning points, which are not symmetric.
The lowest order correction to the bounce frequency of particles bouncing

near the bottom of the distorted well can be extracted through the Bogoliuvov

procedurezo applied to the equation

' 2

b 4% =- Am(y+5) + E/A (s)

! d<?

: where £ =kx,, E=y+E,, and t=u t. For small displacements |y|<<1, Eq (1) can be

approximated by

.i j;%z% * (M'S,S ‘% % (€uf2N) ‘&z*' (€ IA?(%K,\ [e (6)

Taking the solution to be of the form

T e,

and eliminating the secular behavior in lowest other leads to




1y
-;J-‘-t a= o (K,E,lzk\ (2w m'g’\" S;le cor 0 Am' e
(8)
d o=20
a3t
and . : -\ (4. e
d o = ()™= (nay,) ™ (5. /A (19wa) X;le amte
dt
! 9)
4 6 = (cony ) (1~ o/1e)
dt
which results in the modified bounce frequency ab
@y, = (ehA/m)‘"[\-(e.mﬂ“\\ — (R¥o /Y | o

for a particle of initial displacement Xge It is seen explicitly from Eq (10)
that the application of the DC electric field weakens the restoring force pro-
vided by the wave potential, and furthermore that bouncing ceases to exist as
Eo approaches A.

The distortion of the well produced by Eofo gives rise to the detrapping
of some particles which for E°=0 would remain confined within the wave troughs.
The time evolution of the orbits of these detrapped particles can be obtained

" by solving Eq (1) in a perturbative manner, i.e., taking the lowest order orbit

Eo to be

%.(t)
A = EolA

i

XE)+ ¥IT +ATY2
(1)

The scaled equation for the first order velocity becomes
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%, % - a3 SOT AT

I

J‘t
dx a2)

whose exact solution can be expressed in the terms of the Si (sine) and Ci
(cosine) integrals, i.e.,

€ (v) = ;'(m"“ iCa(em]— Cx[u»ﬂl AiM O,

* XSL [o]- Si.\;(ofj\ cor e, as)

where,
0,= %) - [X@] /2>

2(t)= ()T + § o) /N
(14)

The asymptotic behavior sets iﬂ21 for z>4 and the leading expansions are

Six W - car/2

Cim amz/z 5)

thus indicating that the detrapped particles become runaways which exhibit
decreasing oscillations with a frequency wR-wb(EO/ZA)ll z, (ekEOIZ-)I/ 2. The
net effect of the wave potential on the runaway electrons created by the de-

trapping process is to modify the free-fall velocityby an amount 4V given by
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v = (IR (Af2E) " {M o, 2] - coae, [wia- Sttﬂo\ﬂ} ae)

over a characteristic time Atmloluk.

The displacement of the bottom of the effective potential given by Eq (3)
plays a major role in the time evolution of the wave amplitude. Essentially,
the forward push provided by Bo overcomes the particle recoil associsted with
momentum transfer to the wave. Hence, a particle remains in synchronism with
the wave and causes a secular increase in its amplitude, as is discussed in
Sec I1I. Therefore, an additional consequence of Eofo is that the depth of
the trapping well increases in time if Bo is less than the threshold value for
the destruction of trapping (i.e., 56<A to lowest order). An exactly soluble
simplified model of particle trapping in this enviromment is described by the

equation

m % & eALlrat)(RY) = €€,
d<* .

where a measures the rate of increase of the wave amplitude. Defining the

avxiliary variables

n= (W I.g\‘"‘ (Vv at)

2z (/wy)® (AIE) vx)

transforms BEq (17) into




_s‘.:.!\-‘b(tz\f.., , (19
dn* | ) |

which is tho inhomogoncous Alry oyuation whose solution for a particle initially

trapped at the bottom of the potential well (i.e., z = dz/dn = o' at t = o) is
given by

APz« "a Aoy + bBLIY) - 1(‘ Gtm'l

(20)

vwhere Ai, Bi, and Gi are the standard Airy functions. The constants a and b

o= (GiBL-6i8)/8l

_ (& AL- GLAL) /AL
b_(G., AL - GLAL)/ an

vhere the prime denotes a derivative with respect to the argument and all

functions are evaluated at n(0) = (mb/a)zls.

In the ;synptotic limit at>>1 Eq (20) implies that the particle position
is given by

K (S INRYF coal(afa)(ieee)™s ¥] (eat)’* (22)

In Eq (22) ¥ is a phase angle determined by the ratio of a to b, and F is the
corresponding amplitude, which is strictly a function of (u/a)%/>.
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It is seen from Eq (22) that the trapped particles execute rapid oscillations

o A s i mbanene A

whose amplitude is proportional to the displacement of the bottom of the well pro-

duced by Bo (i.e., Eq (3)). These oscillations decrease in time due to the com-

pression produced by the ever increasing potential well. It is this compression

{ which is responsible for the formation of the singular charge clumps associated
' with the dynamic BGK equilibrium described in Sec V. It should be noted that
although Eq (22) applies exactly to a linearly increasing wave amplitude, similar

§ results are obtained for other time dependences, and can be calculated asymptoti-
cally by means of the well known WKB analysis.

[ .




o oA Ak o o Vot SO

LI et tioe d i

. II1. Weak Cold Beam Formslisa

Consider a fast electron.beam of initial speed v o whose density ny and
thormal aspreed are-sufficiently small to meet the woeak cold beam critnil.“
The beam is assumed to propagate through a medium (a cold plasma of density n,
or an equivalent slow wave structure) whose behavior remsins strictly linear, so

i that this contribution to the problem can be described analytically by means

of a slowly verying dielectric efk,w(t)]. Since in the present study one is
* interested in the role played by the dynamics of the trapped particles, ‘the
beam is discretized into N charge sheets whose individual orbits x i (t) are
: followed in a digital computer self-consistently with the evolution of the waves.
. 'l;his procedure is to be contrasted with the mlyﬁc description of the beam
behavior used in the spatially averaged formalism.
Defining the scaled position of particle j in a frame moving with the initial
; . velocity of the beam by Ej (t)-kO[x 3 (t)-vot]. where ko is the wavenumber of the

fastest growing linearly unstable wave, yields the equation of motion

dt*

4 5, = € - ii“. A‘(t)wp[n(x‘sé-s‘tﬂ x c.c.}

(23)

1 where the scaled quantities are

S ‘l‘b
A= [@mmd/(enu))” | Tt=at

M= R/Re 5y = (W - @R/R)/ N

An= (eRe/mst) Ey , € = (ehe/ms?)E,
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The physical meaning of the quantities in Eq (24) is the following. Ek is the ‘

complex amplitude of a wave having wavenumber k, which in the absence of the beam

has a laboratory frequency u:*up, where “p is the electron plasma frequency

of the background medium. Ak is the wave amplitude scaled to the saturation level
ET-nnzleko due to beam trapping by the fastest growing wave ko, when eo-o. 2 is
essentially the growth rate of the linear beam-plasma instability, and t is the
appropriately normalized time variable. sk is the Doppler shifted frequency of
mode ko in the frame moving with speid Vo ug refers to the frequency of mode
ko in the absence of the beam. Finally, € is the real part of the dielectric,
i.e., e-er+ici, and (aer/aw)o is the derivative evaluated at k-ko.w-wg. By
analogy, (asr/an)k refers to the same quantity evaluated at k and u:.

The self-consistent time evolution of A, is determined from Poisson's

equation, which in the slow time scale approximation (n<<mp) takes the form

N .
jTJC_A‘ v R Ay = (Dp /NN é‘me-L(x‘x-a-s‘t)k

(25)

in which
Oy = (& I}/ (€ 130),

Dy = (3&/30), [(3¢+/20),, (26)

Physically, rk represents the weak dissipation acting on mode k. 1Its origin
is left unspecified in the present work, but can be conceptually associated

with background plasma heating, wall heating, radiation leakage, etc.
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The principal dynamical effects associated with the presence of the external

DC electric field can be understood from the exact conservation relations derivable

from Eqs (23) and (25), namely

d s, ). €-27 (MR I
R{Z;.Eﬂ;-; %(’N"D‘\\A‘\] W LRI

27
" | | _ E
412 23: v Z % (e NORY (TN S
=€ (‘zs: %)-2 Z\:‘(t‘klbk\‘_'up?e oA (28) f

where, Re (cuk) refers to the real part of the complex frequency shift defined
by

. |
AGLE) = ALY erp ke S PLATRL )‘l -

Equation (27) is the conservation law for the total momentum of the system,

which is composed of the beam momentum

= :E: 'i'
(30)

and the wave momentum




e b A A 1 o R Tt it

T

Py = *{.(nwo\a.\‘ ‘

(31) l

The total momentum can be altered (increased or decreased) by a nonzero €, and

is destroyed whenever there exists a wave dissipation channel (i.e., I‘kﬂO).

Equation (28) represents the conservation of energy principle in the

frame moving with speed v, relative to the lab. It states that the total energy, .

.
o AR T

composed of the mechanical beam energy

>

U= & 55
1Y 3 2N (32)

;
1
;

and the wave energy

T Zé D, {oa+2Re (sw‘\] W\ |

33)

is altered by the work done on the beam part'icles by@, and is dissipated when
I‘k#O.

For I‘k-O, the conservation laws take the simple form

%(P\,*\’w\= e (34)

8 (werWu) = & Py
dt (35)

When€s0, Eq (34) is satisfied by balancing the growth of the nearly mono-
chromatic wave with a corresponding decrease in the beam momentum, i.e., the

beam recoils. As the beam recoils, its kinetic energy increases in the frame

moving with speed Yo relative to the lab, thus Eq (35) is satisfied by the appear-
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ance of a self-consistent real frequency shift of the single mode. The simultan-
eous constraints imposed by Fqs (34) and (35) result in the trapping of the beam
particles and the corresponding saturation in the growth of the single mode.
For‘ﬁo, it is evident from Eqs (34) and (35) that a steady state does not
exist. Both, the total momentum and the total energy of the system must increase
seculnrly in time due to the external push. There are two conceptually different
states capabie of satisfying Eqs (34) and (35). One of them is the pure
runaway regime, in which the external push provided by the DC field gives rise
to an unbounded growth in beam momentum, i.e., dpb/dtwii The other state is the
norg subtle beam clamping regime, in which the beam momentum remains essentially
constant while the wave amplitude increases secularly in time, i.e., dpw/dt'\:e
Of course, one also encounters an intermediate state in which only a small
fraction of the beam remains clamped, thus resulting in a simultaneous increase
in mechanical and wave momentum.

) . + .
The attainment of a given state, beam or wave runaway, is determined by the

l\
strength of the DC electric field. 1If Eo>>ET, then the force produced by the
wave c?q qot\cancel the external push, consequently the beam runaway regime is
. “
R

triggered. However, if E, <F. then the push of the cxternal field can be reduced

T
by the wave electric field. As is discussed in Sec 11, the IC field shifts the
position of the trapped particles relative to the bottom of the well, hence the
particles continue to drive the wave unstable. Another way of visualizing this

effect is to say that the IC ficld offscts the beam recoil associated with the

saturation process for Eo=0. For EONET it is expected that the intermedinte

regime should set in,




IV. Clamping Behavior

To investigate the dynamics of beam clamping, Eqs (23) and (25) are solved
numerically for a collection of discretized beam particles, typically in the
range Nv300-500. At first we consider the undamped (rk=0) single mode problem
in which the linearly fastest growing mode becomes dominant and traps the beam
electrons.

In Fig. 2, the smaller curve, labelled E°=O, exhibits the time evolution
of the amplitude of the single mode when there is no DC electric field present.
The characteristic long-lived amplitude oscillations due to the bouncing motion of
the trapped particles are evident. The secularly growing solid curve in Fig. 2
is the result obtained by turning on a DC field of strength E°=0.5ET at the time
the wave reaches the first peak, i.e., at the saturation time. As predicted by
the spatially averaged formalism and required by the conservation laws, the wave
exhibits unbounded growth (wave runaway) while the momentum of the beam particles
remains clamped (i.e., it does not increase). The dashed curve iﬁ Fig. 2 repre-
sents an approximate prediction that would be made by the spatially averaged

formalism, i.e.,

A Ve
A‘ts ~ ‘_ k‘z (T) + e (x- to\—x (36)

where,‘to refers to the turn-on time. Of course, the more sophisticated prediction
of the spatially averaged theory would require the simultaneous solution of 3
algebraic equations, as is done in Ref. 10. Nevertheless, the simple prediction
of Eq (30) gives a good account of the average secular growth induced by the DC
field. However, Eq (36) can not reproduce the oscillations that accompany the

secular growth. These oscillations are associated with the bouncing motion of

the trapped particles in a potential well which grows in time, as described by
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the analytic solution [Eqs (20) and (22)] of the model discussed in Sec II. As

expected, Fig. 2 shows that the frequency of the amplitude oscillations increases,

and their depth disappears.
Figure 3 displays the phase-space patterns at t =35.0 for the two cases shown

in Fig. 2. Note that the velocity scales are different for the two cases, while ;
1
the spatial scales are the same. In Fig. 3 the solid curve superimposed on the %

phase-space pattern is the instantaneous spatial dependence of the force produced

B ks

by the wave, The major difference between the two cases is that for E°=0, the
trapped particles are smeared out over a full wavelength, whereas for ES’O'SET

the particles are focused and exhibit a spiraling motion of ever decreasing

spatial extent. It should be stressed that the average momentum of these particles

does not increase even though the DC field is acting on them. In addition, the
phase-space for EO- O.SET shows the existence of a secondary population of run-
aways which consists of less than 10% of the original beam particles.

An element of potential weakness in the spatially averaged theory of clamping
is the need to specify the spatially averaged distribution function <f> of the
beam, as it interacts with the growing waves. The simplest mathematical choice
is used in that formalism. It consists simply of a Lorentzian whose parameters
change self-consistently with the conservation laws. The reason why the spatially
averaged formalism is so successful in predicting the clamping behavior in spite
of this difficulty is that the actual <f> obtained by following the exact particle
orbits has the essential qualitative features of the Lorentzian beam, as can be
seen in Fig. 4. 1It is observed in this figure that the majority of the particles
form a clamped beanm that has a finite thermal spread which increases slowly in
time. Figure 4 also shows a feature which is completely missed by the spatially i ;
averaged theory, namely, a small secondary runaway beam which can not be stopped

by the main wave., The secondary beam can interact with other modes having faster

et delal ot G
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phase velocities and may divide itself into a clamped component and yet another
secondary beam. Therefore, a percolation process can be established in phase-

space that produces a multiple beam distribution function of the type observed

in a toroidal strong turbulence experinent.zz

The enhanced damping effect produced by reversing the direction of the DC
field is shown in Fig 5a). In here, Eo--O.SET, hence the beam is decelerated
out of resonance with the wave, i.e., the wave switches from the unstable slow
beam root to the damped fast component, as is described by the spatially averaged
theory. The originally trapped particles envolve into a decelerating beam whose
phase-space structure is displayed in Fig 5b) for t=35.0.

The time development of the pure beam runaway regime is exhibited in Fig.
6a) for E°=4.0ET; the E°=0 is included for comparison. It is seen that the DC
field initially enhances the wave amplitude above the normal saturation level
due to the favorable relative displacement of the bottom of the potential well
described previously, However, in this case the push given by the DC field is
too strong and cannot be compensated by the enhancement in the wave amplitude.
Accordingly, the trapped particles are pushed out of the wave troughs and become
runaway electrons whose phase-space structure is shown in Fig 6b). The transition
from trapped particles to runaways encountered in this problem is a classical
analog of the process of ionizing an atom.

The clamping behavior exhibited in Fig. 2 has been obtained by turning on
the DC field at the time of saturation for the single mode. Therefore, it is of
interest to investigate if the attainment of this state depends crucially on this
particular choice of timing. The result of such an investigation is shown in
Fig. 7, where it is seen that the clamping state characterized by the secular

increase in wave amplitude is attained over a wide choice of initial timing. The

timing window sampled in Fig. 7 ranges from the pre-trapping stage (1) through
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the damping (2-4) and rogrowth (4-6) cycles of the dynamics. The principal
offect associated with the choice of timing is the natural delay of the onset
of the secular growth stage, which is manifested in Fig. 7 as the relative
slippage of the wave amplitudes for the different cases (1-6).

The sensitivity of the clamping state to the amplitude of the applied DC
electric field can be quantified by means of the ratio of the number of runaway
electrons created NR to the total number of initial beam particles N. The depen-

dence of this ratio on Eo/ET is displayed in Fig. 8. It is seen that for Eo/ET<1'25

the runaways constitute less than 10% of the total population and their number is
not sensitive to the exact value of Eo. The reason for this behavior is that in
this regime a significant fraction of the runaways are created by the natural spil-
lage of the trapped particles out of the time dependent potential wells; a process
which occurs even when ano. For Eo>1'25£T’ one observes a dramatic increase in
the number of runaways, eventually attaining the 100% level at Eo=4.OET. This
absolute upper limit on the destruction of trapping by a DC field is roughly a
factor of 2 larger than expected for a wave of fixed amplitude. The reason for
this higher threshold is that the wave amplitude grows due to the application of
the DC field, hence the threshold discussed in Sec II (i.e., E°=ZET) varies as a

function of time during the interaction. The net integrated result is essentially

the curve shown in PFig 7.
Since the clamped state is insensitive to the timing of the DC field and it

exists over s broad range of values E°<4.OET, it is then possible to modulate the
amplitude of the wave by applying DC pulses which are consistent with these limits.
An example of such amplitude control is demonstrated in Fig 11, where one applies
t.+0 square pulses of magnitude IEol-O.SET, but having opposite polarity. It is
seen that the amplitude can be increased, held constant, and decreased. An impor-

tant point about such a control, which may have some practical application, is

4
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that the response of the wave amplitude is essentially linear even though the
dynamics of the underlying system is strongly nonlinear.

In the clamping behavior previously discussed, it is explicitly assumed that
a single mode dominates the wave spectrum. In practice this situation can be re-
alized if the system evolves from an extremely low noise level, or if the spectrum
is initially enhanced by modulating the beam or launching a test wave of substan-
tial amplitude and with a wavenumber corresponding to the fastest growing linearly
unstable mode. The presence of many modes in the beam instability produces a
natural smearing of the phase-space granulation associated with particle trapping.
This effect can be viewed dynamically in terms of a non-stationary potential well
(due to the sum over all modes) which gives rise to the stochastic trapping and
detrapping of the resonant particles, or alternatively as arising due to global
phase mixing because particles trapped in different troughs bounce with different
phases and bounce frequencies. In either interpretation the net result is that
the qold beam develops a thermal spread rather rapidly. Therefore, it is of interest
to check if the secular wave growth triggered by the application of the DC electric
field occurs in the more complicated multi-wave environment.

The role played by modes having wavelengths longer than that of the fastest
growing mode (i.e., k <k0) is shown in Fig 10. This figure exhibits the time
evolution of the wave amplitudes of a system containing 7 modes. The spectrum con-
sists of the fastest growing mode ko, and 6 lower modes having a mode spacing
Ak/k°-0.07, and with a beam density corresponding to n/wp=o.1. In Fig 10a) the
behavior for E°=0 is shown. It is observed that the main mode is still dominant
throughout the entire time evolution. However, the trapped pg;ﬁicle amplitude
oscillations are not well defined. The reason for this behaviofw{Q{;;en in the

phase-space shown in Fig. 10 b), where a high degree of phase nixingfis observed.
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3 ! The effect produced by the application of a DC electric field (EO-O.SET) to this i

Fi ; system is shown in Fig. 1la). It is found that the characteristic secular growth !

A f . in wave amplitude indeed occurs, and that clear trapping oscillations now become
evident. Note the difference in amplitude scales between Figs. 10a) and 1lla).
As expected from Fig. 1la), the phase-space associated with the secular growth,
Fig. 11b), shows heavily populated clumps and a negligible number of secondary
runaways, quite similar to the behavior obtained for the pure single mode case.
The effect produced by the inclusion of waves having wavelengths shorter than
that of the main mode (i.e., k>k°) is shown in Fig 12a). The spectrum in this
system contains the fastest growing mode ko, and two upper and two lower sidebands
with mode spacing Ak/ko=0.08, and n/up-o.l. The principal feature in this system
is that the main mode decays right after reaching saturation and triggers the
growth of an upper sideband which eventuallx dominates the spectrum. In this
case the characteristic trapping oscillations are absent, as %s expected from the
corresponding phase-space shown in Fig 12b). The application of a DC electric

field (E°=0.7ET) to this system also produces a secular growth in the wave amplitude,

as shown in Figure 13a). Again, note the change in scales between Figs 12a) and

AR Sy S A v~

13a). The degree of clump formation in this case is much less than in the pure
single mode problem and the number of secondary runaways is significantly increased
5 ' as seen in the phase-space of Fig 13b). The reason for this behavior is that in

§ the zerv order system (E°=0), particle trapping is destroyed by the sideband

growth,

.
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V. Dynamic BGK Equilibrium

It has been shown in the previous section that in the absence of dissipation
the wave amplitude exhibits unbounded growth for DC fields such that Eo<4.OBT.
Within the restrictions of the model a steady state cannot be attained., Therefore,
the clamped-beam particles are compressed into singular charge clumps. However,
when a finite amount of wave dissipation is present, an interesting nonlinear
steady state can be found analytically. It consists of a trapped particle equili-
brium of the type associated with a BGK mode, but in which there is energy and
momentum being continuously circulated through the system.

The steady state flow of energy and momentum can be deduced from Eqs (27)

and (28) for the single mode problem, i.e.,

d - € - * (37)
J}"-?"”ﬂ“e 20 A\ 7

dlwu LYW B 3 -'ZFW\A\-L
dt . —l % 38)

where I' is the damping rate, W the real frequency shift and A the wave amplitude.
The steady state is obtained by balancing the dissipation of energy and momentum

due to the wave damping against the source of momentum and energy provided by

the DC field. The requirements are

\
p = '(Elzt'\h , W=p, 59)

These conditions aiise from global properties of the wave-particle system and must

be consistent with the motion of the individual particles in order for the steady
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state to be realizable. To check this consistency requirement, write the equa-

tion of motion for particle j in real form

2 <
! [
Ey %. = £ -2A) e [‘Eé(t) - SAt wh:)] (40)
dt? 3 °

from which it is seen that dpb/d-r-O if the particle position is given by Ej(t)-
9+Pbr. In here 6 is a constant phase factor independent of the particle label

j (i.e., a singular charge clump is formed), and must satisfy the force equili-
brium condition

€ _ we
T @

which has a physical solution provided 3/2A<1. This consistency requirement,
together with Eq (39), implies that(‘ I‘/Z)l/ 2 <1 for the dynamic BGK equilibrium
to exist,

It must then be verified that the choice of a singular clump indeed gives
rise to a constant wave amplitude and a constant frequency shift. This check
cin be obtained by analyzing the real version of Eq (25), namely

* ’ (£
%A*pkr_ _&_%mbs- Soh W(t\-l (42

T
AW = L 2 MK‘S,- - Soét'w\t%]
" (43)

The choice of a singular clump population transforms Eq (42) into
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4 A+TA = cnne (44
dt

e

which using the dynamical equilibrium condition of Eq (41), together with the

conservation constraints of Eq (39), results in ’

A Ax0A = (20824
dt :

(45) 3
1
thus showing that dA/dt=0, as required.
Similarly, Eq (43) is transformed into ;
W= Aame/A 46)

which is explicitly time independent in view of Eq (45), and from which one obtains

the self-consistent frequency shift associated with the dynamic BGK equilibrium

W= - (2”53"1 Le- (5"’7-\]"1 (47)

The choice of the negative sign in the square root of Eq (47) is determined by
the physical need to locate the clump within the confining trough of the wave
potential. The disregarded positive root corresponds to a potential hill instead
of a valley.

The nonlinear steady state analyzed in this section consists of a singular
charge clump which is located inside the potential trough of a constant amplitude

wave and propagates at constant speed even though an external DC electric field




{ acts on it. This is an example of a nonlinear dynamical equilibrium in which ;
the trapped beam particles play the role of an intermediate agent which transfers i

the external momentum push of the DC electric field to those physical mechanisms

s AN

responsible for the wave damping. The physics behind the continuous excitation

of the wave is that the constant position of the charge clump is displaced relative

to the bottom of the wave trough in the positive energy transfer phase of the
usual trapped particle energy transfer cycle, as is evident from Eq (44).
The singular charge clump associated with the dynamic BGK equilibrium can

be attained only in the limit I'+0, 1+~ (neglecting space charge limits, which

eventually become important)}. For finite values of T and r, the actual clump
has a finite spatial extent. The consequence of not having a perfect charge
singularity on the parameters of the exact dynamic BGK equilibrium can be

assessed by expressing the orbit of the j trapped particle as

‘;_.8-.- ¥+t +dim(p‘jt+¢3\ (48)

vwhere Eo is the force free equilibrium position defined by cosi = G/ZA, and

“j is the finite excursion having frequency Bj and random phase Oj. é

Considering that a fraction o<l of the original beam particles remain

;. clamped and a corresponding amount (1 - ¢) runs away, as is always the case,

implies that the self-consistent frequency and amplitude are determined essen-
tially by

~ar

@ T T emlv vt cnipite i
b MA = N§ (ARES it (49)
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in which the small Chigh freﬁuency) modulation due to the oscillatory orbits
of the runaways, given in Eq (13), is neglected.

Using the finite series expansion in terms of Bessel functions for the
expressions in Eqs (49) and (S0), and realizing that summing over j is equivalent

to averaging over the random phases ‘j leads to

NA = §ony, (s1)
WA = TAamY, (52)
§=S % T, (43) (53)

where J° is the Bessel function of order 0 and the quantity f measures the
degree of focusing of the clump, e.g., as‘aj+0, f+o,
Solving Eqs (51) and'(SZ) leads to the modified parameters for the approx-

imate BGK equilibrium due to a finite size clump

A= ($€/2 r)* (54)

we - rstel 1= e =

which reduce to Eqs (39) and (47) in the limit f=1. From Eq (55) one finds
the more restrictive condition for the existence of the finite size BGK equili-
brium to be (I€/2) <. This condition should be used in conjunction.with Fig 8
to delineate the parameter space ameanable to the formation of a dynamic BGK

equilibrium.
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To check on the existence of the dynamic BGK equilibrium, we solve Eqs (23)
and (25) as in Sec IV, but now proceed to include the effect of damping, i.e.,
rd0. Figure 14a) shows the time evolution of the wave amplitude for the case
r=0,02, Eo-l.o ET. It is found now that the secular behavior, exemplified by Fig.
2, is stopped. The system approaches asymptotically a steady state whose amplitude
is slightly smaller than the prediction of Eq (39), i.e., (€/2r)Y/? = 4.2, sin-
ultaneously with the approach to this steady state, one observes the formation
of a high density cluster of beam particles, a clump, whose velocity remains
essentially constant, as is characteristic of the dynamic BGK equilibrium, and
is exhibited in the phase-space plot of Fig 14b).

The formation of a highly coherent trapped particle state in the presence of
finite damping, as demonstrated in Fig. 14, may on first thought appear to contra-
dict the weli documented fact that trapping can be destroyed due to the effect of
finite damping, as studied by Dimonte and Malmberg.8 As shown by these authors,
the destruction of trapping is not due to the obvious dissipative decrease in wave
amplitude, but rather it is caused by a sudden nonlinear phase shift which pulls
the particles out of the wave troughs, thus causing a dramatic damping in the wave
amplitude. Figure 15 shows the existence of this sudden damping, for I' = 0.075,
occuring just after the second trapped particle oscillation, t<20.0. The phase-
space structure corresponding to this damping is shown in Fig. 16a), where it is
evident that strong phase mixing has occurred. The effect produced by the applica-
tion of a DC electric field to the phase-space structure of Fig 16a) is exhibited
in the late time (t>30) portion of Fig 15. The DC field causes the regrowth of
the wave and asymptotically it approaches a dynamic BGK equilibrium. The regrowth

of the wave is accomplished by the reorganization of the phase-space structure due

to the push provided by the DC field. The DC push positions the majority of the
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trapped particles in the correct phase for transferring energy to the wave, as

seen in the phase-space of Fig 16b). In the process of moving the trapped particles

to the favorable position for wave growth a secondary runaway population is created.
The attainment of a steady state due to finite wave dissipation in the presence

of many modes is also possible, as shown in Fig. 17a) for the parameters E°=0.7ET,

r=0,02. The system contains 6 lower modes (k«o) in addition to the main mode, and

has a mode spacing Ak/ko=0.07 with n/up-O.l, as in the case considered earlier in

Fig. 12. Together with the approach to an asymptotic constant wave amplitude, one

observes in the corresponding phase-space picture of Fig. 17b) that spatially focused

charge clumps appear, as expected from the dynamic BGK equilibrium analysis.

However, due to the presence of several non-resonant modes, a significant fraction

of secondary runaways is created. Since the runaways do not contribute to

driving the wave amplitude, it is found that the asymptotic wave amplitude attains

‘a level A=3.0 which is lower than the ideal pure single mode prediction of A=4.2.

From this difference it can be estimated through Eq (54) that the focusing parameter

has a valﬁe £=0.56. This value, although lower than that for a perfect dynamic

BGK equilibrium (f=1,0), is found to satisfy the necessary existence criterion O

for the steady state, i.e., I'§2<f, A similar result is also obtained when

upper sidebands as well as lower sidebands are present, However, due to the

destruction of particle trapping produced by the upper sidebands, as seen in J

Fig. 12, the degree of clumping is significantly reduced, i.e., the focusing

e i D it

parameter attains a low value f«(,2.
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V1. Stability of Clump Equilibrium

Several years ago considerable theoretical effort was devoted to the study
of the sideband instability associated with trapped particle BGK equilibria. The
motivating reason for the intensive theoretical activity was the experimental

observation of Wharton, et a1.23

that sideband signals were spontaneously excited
when a monochromatic large amplitude electron plasma wave was externally launched
in a collionless plasma. One of the more interesting models proposed to explain

24 It consisted of the

the experimental results was advanced by Kruer, et al.
ad-hoc assumption that the trapped particles were bunched into a singular clump
located exactly at the bottom of the potential well of the wave. The earliest

analysis of this model by Kruer, et al. showed that sideband waves were indeed

unstable; the physics behind the instability being essentially associated with

the linear dynamics of a spatially periodic cold beam. Although a computer

25 of the problem by Kruer, et al., showed that instead of

particle simulation
a singular clump, a large hole was formed at the bottom of the well, the clump
model yielded predictions which were in rough agreement with the observed side-

band growth. The analysis of Kruer, et al. was subsequently corrected by Goldman
26

and Berk®" to include the important effect produced by the requirement of self-

consistency, i.e., a nonlinear frequency shift must always accompany the formation

. of the charge clumps. The nonlinear frequency used by Goldman and Berk was taken

from an early calculation by Bohm and Gr05327

, and although it provides a logical
improvement upon the model of Kruer, et al., it is not the correct frequency
shift5'6 associated with a large amplitude electron plasma wave, These difficulties
simply stem from the fact that the clump model is not the correct dynamical descrip-
tion of the launched wave problem. Nevertheless, it is an interesting system

to investigate.
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The dynamic BGK equilibrium discussed in Sec V has the singular clump nature

of the model postulated by Kruer, et al., but does not suffer from the lack of

self-consistency and dynamical origin. The wave amplitude, clump position, and
nonlinear frequency shift are all analytically known. Iﬂ addition, the formation
of the clump is dynamically possible due to the spatial compression provided by
the secular growth of the wave potential. Accordingly, the dynamicABGK equili-
brium is the natural system for calculating the stability of clump equilibria.

3 The stability analysis that determines the growth of small waves of amplitude

E, wavenumber k, and frequency d. can be performed in a manner analogous to the

calculation of Kruer, et al. The result is

e ““E“‘ 0)= [ 3 U: (Mo imo) Z‘ g(kdh.,m-.!h.?r.) WP(U}A
’ ’ (@-RTY= T te-e (56)

in which 50 refers to the time asymptotic velocity of the wave (different from

vo), and Bb is the bounce frequency in the presence of the DC electric field

given by Eq (10).

In general, the stability problem involves the solution of an infinite

determinant which represents the coupling of all the Floquet (Bloch) states
k+zk°, as indicated in Eq (56). However, in the limit of small °“b/“o the low-

est order nontrivial coupling which is often investigated consists of retaining

only the 1=0,2 terms. The simplified system consists of

eMdXy |, Xewl-iv)

ix‘pﬂ;(ir.\ , &)*Ty | (s7)
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where e(l)-c(k.u),s(Z)-s(k-Zko,u-Zk‘;?o), and

- TOy (My fm
IT —-— L—b: o)z (58)
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The expansion of Eq (57) leads to the dispersion relation

\ \
- - —_— i — (59)
| XTK e() ¥ €(?)

which has the characteristic structure of a parametric instability problem.
Taking into consideration that u-mp+6m, | 8w <, and recalling the weak

cold beam scaling given in Eqs (24) and (26) reduces Eq (59) to

LA
Y{e)- W

(\k-l..“\(zw-‘ai' i-"') = (60)
in which the unknown complex frequency has been scaled to y=8w/Q, and the k

dependenco enters through
o = (V- R/R) (We /) - (RIwo)W (61)

It should be mentioned that in arriving at Eq (60), the background plasma
has been taken to be cold, hence the scaling factor n-up(n.bIZno) 1/ 3.

The factor W appearing in Eq (61) is the self-consistent nonlinear frequency

shift given by

\ \
W= - (2pe/e)* (1- (re/aey)" (62)




and the scaled bounce frequency is

W, = (zrclr')‘“ [r- U‘Glzc')]\“[\- (€n/32¢) (63)

The principal features of the dispersion relation, Eq (60), can be obtained
by considering the limit |W|-0, ;b>1. Physically, this regime corresponds to weak
damping and large potential wells, as is required for the formation of a dynamic
BGK equilibrium. Neglecting the explicit dependence on ' and W in the left side
of Eq (60) yields

¢ Iwl\

(ta-\-'r’- Wb\(%* ++ W)

Y =

(64)

which shows that as |W|+0 the regions of instability are centered around r=:ﬁb.

Considering each of these regions to be well separated from each other results

in
2 = *
% (‘\*st\ = t &iwl (65)
where y=s :t*wb' One can now define the useful scaled variable

2= (‘34—5,)/(6"“"?-‘“;\"3 | (66)

to express Eq (6S) in terms of a dispersion relation which is identical to that
of the weak cold beam-plasma instability
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2
2(2-K,) = £\ (67)

with Ki'st/(|W|°/2ws)l/3o As is well known, the maximum growth rate in Eq (67)

occurs for ntno, and has growing roots given by z,= exp (i2n/3) for r-ﬁib, and

and z_=exp(in/3) for rs-W%. This implies that the maximum growth rate of the
instability is

s (T 4) = (0. 366) (1! /2%,)"

(68)
L and corresponds to two growing sidebands
b. o
R R T Wy )
4 = o
\4+ AW/We
(69)

centered around the main carrier mode ko’ and each having a spectral width

\
A“lho ~ (T‘W‘lz w\\ls (70)

Using the self-consistent values for W and W£ given in Eqs (62) and (63),

) o yields the parametric dependence of the growth rate ¥ from Eq (68), namely

4 \J
x[w' ~ (o.ibb) (‘-"Ie) * (e IMO\ 3 (71)
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This result shows that the sidcbund instability driven by the charge clumps
associated with the dynamic BGK equilibrium disuppcars asymptotically as T'/@§*0.
For finite values of I/ , two growing sidebunds appcar at the bounce wavenumber
(k) =k ey /2,

The existence of these two unstable sidebands is illustrated in Fig 18, which
is obtained by the exact numerical solution of the dispersion relation, Eq (60),
for the parameters I's0.02, § =1.0,0=1.The location of the sidebands coincides
with the prediction (kb)’=(l.3)k0, (kb)_=(0.7)ko. However, the maximum growth
rate obtained (v0,25) is slightly smaller than that predicted by Eq (68) (i.e.,
~“0.31). The difference can be truced to the fact that the term 2|W[=0.4, hence
it is not begligible in the left side of Eq (60), as is assumed in generating

Eq (%8), which is strictly correct in the limit |W|-+0.
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VII. Conclusions

This study has demonstrated that the 'ph¥nomenon of beam clamping, predicted
by the spatially averaged formalism, indeed occurs when the exact microscopic
dynamics of the beam particles are calculated self-consistently. The clamping
in beam energy produces an unbounded increase in wave amplitude. Therefore, the
spatial structure associated with beam clamping (and averaged out in the previous
formalism) corresponds to trapped particles which are strongly focused in space
due to the large growing potential wells. This process can have practical applica-
tions in the areas of efficiency enhancement of travelling wave tube devices and
future free electron lasers.

The limits on the amplitude of the DC fields which can be applied before run-
away behavior sets in have been found. A useful insensitivity of the wave ampli-
tude enhancement on the time of application of the DC field has been demonstrated.

In the presence of wave dissipation a new nonlinear state has been found
analytically, and is observed to be approached in the time asymptotic limit by
the numerical solutions of the problem., This state is a dynamic BKG equilibrium
consisting of a singular charge clump which propagates through the medium at
constant speed even though a DC electric field acts on it. The clump plays the
role of an intermediate agent which transfers the external push to the sources
responsible for the wave dissipation.

The dynamic BGK equilibrium found in this work provides the ideal analytical
model to investigate the sideband instability triggered by trapped clumps, i.e.,
all its parameters are known analytically and it ‘can be generated dynamically.
The growth rate for this instability has been found.

In summary, a variety of interesting effects have been shown to arise when

a DC electric field is applied to a system containing trapped particles. Many
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of these effects appear to be readily amenable to experimental observation, and

some may find a practical application.
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Figgre Captions

Spatial Dependence of the effective trapping well in the presence of a
DC field for the cases EOIA-O, 0.2, 0.5, 0.9.

Secular growth of wave amp’itude produced by a DC field E =0.5E.. The

Eo-o curve is the saturated beam instability in the absence of the DC

field. The dashed curve is the approximate prediction based on con-

servation of momentum alone.

Phase-space at t235.0 for a) E_=0.5E; and b) E =0. The solid curves

represent the instantaneous spatial dependence of the wave force.

Spatially averaged velocity distribution function in the clamped stage

(t=40.0) for EO-O.S ET. Note the appearance of a small secondary

Tunaway component.

Enhanced wave damping produced by a decelerating electric field.
a) Time evolution of wave amplitude for EO-O and EO--O.SET. b)
Phase-space at 1=35.0 for E,=-0.5E,.

Runaway beam regime. a) Time evolution of wave amplitude for

50‘0 and E°-4.OBT. b) Phase-space att =35.0.
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Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11:

Fig. 12:

Fig., 13:
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Dependence of secular growth of wave amplitude on turn-on time

of DC field. Inset shows turn-on time relative to EO-O evolution.
Labels on secularly growing curves correspond to inset timing marks.

Dependence of secondary runaway production on strength of DC field.

External control of wave amplitude by two square-wave pulses of

opposite polarity, Eo-tO.SET.
Effect of lower sidebands (k<k°) for Eoso. a) Time evolution of
wave amplitude for 7 modes, Ak/k°-0.07. b) Phase-space at

t=28.0.

Induced secular growth in the presence of lower sidebands (k<k°)

' for E_=0.5E;. a) Time evolution of wave amplitude for 7 modes,

Ak/k°=0.07. b) Phase-space at 1=26.0. To be coﬁpared with Fig. 10,

Effect of lower (k<k°) and upper (k>ko) sidebands for soso.
a) Time evolution of wave amplitudes for 5 modes (two upper
and two lower sidebands), Ak/ko-o.oa. b) Phase-space at t =26.0.

Induced secular growth in the presence of lower (k<ko) and upper
(k>k ) sidebands for E,=0.7E;. a) Time evolution of wave
amplitudes for S modes (two upper and two lower sidebands),

Ak/ko-o.os. b) Phase-space at t=0.02. To be compared with

Fig. 12,
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15:

16:

17:

18:

-43-

Time asymptotic approach to a dynamic BGK equilibrium in the presence
of dissipation, E°-0.7ET, Ir=0.02. a) Time evolution of wave amplitude.
Theoretical prediction of steady state amplitude is A=4,2, b) Phase-

space at 1%26,0.

DC field reversal of the destruction of trapping oscillations caused
by finite dissipation. TI=0,075, E°=O.SET. Sudden destruction occurs

at t=18.0, Eo is applied at 1=28.0.

Phase-space structures for a finite damping case I'=0,075 a) Subsequent

to sudden damping, t=22.0, ano. b) After DC electric field is applied,
EO-O.SET, T=49,0.

Time asymptotic approach to dynamic BGK equilibrium in the presence
of lower sidebands (k<k°). EO-O.O7ET, I=0,02. a) Time evolution
of wave amplitudes for 7 modes, Ak/ko-0.07. b) Phase-space at
1=36.0.

Scaled growth rate YI and frequency shift YR for unstable sidebands

triggered by dynamic BGK equilibrium defined by E°=1.OET, r=0,02, o=1.0.
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